
Excerpt from

Introduction to Java

iii

The following is a sample excerpt from a

study unit converted into the Adobe

Acrobat format. A sample online exam is

available for this excerpt.

The study unit defines and explains

object-oriented programming. You’ll learn

how to use the exciting object-oriented

Java language to create programs, interfaces, and applica-

tions. You’ll also learn the history of the language and be

introduced to some conventions that will be used throughout

your study of Java.

After reading through the material in this excerpt, feel free to

take the sample exam based on this material.

P
r

e
v

i
e

w
P

r
e

v
i

e
w

/EnrollOnline/SampleTest.jhtml

v

INTRODUCTION TO OBJECT-ORIENTED
PROGRAMMING IN JAVA 1

The History of Java 1

Important Terms and Concepts 2

A Look at Programming 4

The Language of Java 8

ONLINE EXAMINATION

C
o

n
t

e
n

t
s

C
o

n
t

e
n

t
s

/EnrollOnline/SampleTest.jhtml

1

INTRODUCTION TO OBJECT-
ORIENTED PROGRAMMING
IN JAVA

Welcome to the exciting world of programming in Java.

You’re about to learn one of the most widely used computer

programming languages. The Java platform is a new way of

computing that’s designed around the power of networks.

It’s designed based on the idea that the same software

should run on many different kinds of computers, consumer

electronics, and other devices.

The History of Java

In the early 1990s, Sun Microsystems established the Green

Team. The team’s task was to study many common electronic

objects—such as stereos, televisions, microwave ovens, remote

controls, even automobile computers—and try to establish a

single programming language that could be used to operate

all of these devices.

Since they wanted to emulate real-world objects, it was obvious

that they should use an object-oriented language, such as

C++. The drawbacks to using a complex language, such as

C++, were the size and processor requirements needed to

run such a system. So, the team began working on a new

language with the core functionality of C++, but with a much

smaller library of functions, allowing it to be run on a much

smaller computer.

Sun’s development group named this language Oak, after a

tree one of the team members had outside his window.

Introduction to Java

Introduction to Java

They then began an unsuccessful attempt to sell the idea of a

portable operating system to various electronics manufacturers.

The manufacturers weren’t particularly excited by the

prospect of making their products compatible with other

manufacturers’ components, and the language went nowhere.

At about the same time, a company called Oak Technologies

decided they didn’t want to share their trademarked name

with Sun’s new product, and they required that Sun change

the name of the new language. Popular legend has it that the

team decided on the name Java after one of their many trips

to the coffee shop.

So, there was a new programming language and a new name,

but what to do with a small, powerful language that could

run on almost anything?

Java is an exciting programming language that allows us to

write programs that can be embedded into Internet Web pages

(applets), programs that can be run on any Java-enabled

computer (applications), and programs that might be used

either as an applet or an application.

Users can create interactive pages for Web-based businesses.

Online customized catalogs, questionnaires, order forms,

e-mail requests, and customer lists are just some of the

possibilities. But there’s far more to Java than business

applications. Programmers can create games, animations, and

much more. The ideas are limited only by your imagination.

Important Terms and Concepts
Unlike Java, most current structured programming lan-

guages are compiled languages, meaning that their raw

source code is converted into “machine language” at design

time. This process makes the program run very quickly on

the user’s machine. However, using this “machine language”

means that the completed program can be used on only one

type of computer system.

It also means that if programmers wanted to make a change

to any part of the program, they would have to recompile the

entire program to implement the changes.

Java, on the other hand, is an interpreted language. This

means that the programmer writes the source code on a local

computer, and then runs it through a special type of compiler.

2

Introduction to Java 3

The Java compiler (known as javac) converts the source code

not into finished, platform-specific machine language, but

instead into binary strings called bytecodes. The user then

runs the bytecodes through a program known as an inter-

preter, which translates the bytecodes into a form that can be

run on the client machine. One of Java’s strongest points is

that it can be interpreted on the user’s computer (Figure 1).

public static void main()

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

0110110011001100

1001010110110101

1011000111101110

0101101100110100

0100110110011010

0011010110100100

1100110110010011

0110001110100001

0011100101000110

0101010101011000

1001110010100101

Raw source code

Java
compiler
(javac)

Java bytecodes

Unix
interpreter

Mac
interpreter

PC
interpreter

FIGURE 1—As an interpreted language, Java can be run on any system for which a Java interpreter program is
available.

Introduction to Java

Java allows programmers to produce programs that run on

any host computer with a Java Virtual Machine (JVM). The

JVM reads the bytecodes produced by the java compiler and

provides an execution environment for these bytecodes. The

JVM provides the interface to the host computer’s native

operating system, releasing the java program from the details

of the specific host computer. A program written on a DOS-

based PC platform may be run on a Macintosh, a PC running

OS/2 or Windows, a Sun Solaris workstation, or even on a

mainframe computer under UNIX.

Since the World Wide Web and Internet consist of computers

of many different types, you can see how Java’s versatility

would be useful. With Java, a program needs to be written

only once before everyone else on the Internet can can start

using it, regardless of the type of operating systems involved.

A Look at Programming

Java is an object-oriented programming language. What is

object-oriented programming, and how is it different from

other kinds of programming? Currently, there are two major

styles of programming. The traditional style of programming

used in languages such as BASIC, FORTRAN, COBOL, and C

is known as procedural, or structural, programming. Small-

talk, C++, and Java are object-oriented languages. Before

learning more about Java and object-oriented languages,

let’s take a look at how traditional programming is done.

Procedural Programming

Many command-line languages use procedural programming.

In these languages, each line of the program tells the com-

puter to do something: open a file, get an input, perform an

action, write an output, display the output on the screen,

and so on. The program is simply a set of instructions to be

carried out one at a time by the computer. This might be

an ideal way to write a small program where there are few

variables to consider, or where there aren’t many steps to

complete.

4

Introduction to Java 5

In the real world, however, programs are often called on to

perform a number of complex tasks. It would be very difficult

for a programmer to keep track of more than perhaps a few

hundred lines of coding. However, some larger tasks within a

program might each require hundreds of lines per task. For

this reason, programs are broken down into sections, with

the complex tasks standing on their own. Depending on the

language being used, these sections are called subprograms,

procedures, or subroutines.

In procedural programming, the subprograms can be

combined into groups called modules. For example, let’s

look at a program that calculates payroll for a business. The

core program might request an employee name and an entry

for how many hours that employee worked during a given

period. This request could be called an input module.

Internally, the program can then compare the hours to a table

to see how many hours are to be paid at regular time, and

how many should be paid at an overtime rate. (This could be

called a rates module.) The program can then calculate the

gross pay based on those calculations (gross module).

Next, a pretax module can subtract any special withholdings

from the gross pay before the taxes are calculated. The tax

module will then calculate any taxes based on the adjusted

gross pay. Yet another module (the net module) will tally all

of the withholdings and subtract them from the gross pay.

There might be a year-to-date module that takes these totals

and sends them to a database where all of the figures for

the entire year are held. Finally, the finished pay statement is

sent to the screen, where the operator can then send it to yet

another module, which will lay out the numbers in a partic-

ular order and print the paycheck.

Although this might seem like a complicated process, it’s

really a very simple version of what actually happens. In fact,

there may be hundreds of modules in a typical program.

The Limitations of Structured Programming

When programmers start to deal with many hundreds of

modules in a program, problems will inevitably creep in.

First, the program itself becomes far too complex for just

Introduction to Java

one person to write and maintain. So, there are often differ-

ent programmers programming different modules, and they

might not all be making use of the existing modules in quite

the same way.

For example, Programmer A uses a value from the input

module to arrive at some intermediate value. Programmer B,

working in a different module, needs the same value that

Programmer A’s module provides; however, Programmer B

doesn’t realize that this value has already been calculated,

and so B recalculates it within his or her module. Now

there’s a problem. The same variable, possibly calculated two

different ways, now exists in the program in two different

places at the same time. Programmer C now calls for the

variable in another module. The computer does what it’s told

and sends both answers to the third module at the same

time. Programmer C might expect the variable calculation

as defined in Programmer A’s module but inadvertently get

the calculation from Programmer B’s module, which can

introduce subtle errors that are difficult to correct.

The type of data that was requested is referred to as global

data, because it’s available to every part of the program all of

the time. The data crashes occur because each module has

unrestricted access to the data from every other module

within the program.

The Real World

The second problem with procedural programming is that it

doesn’t apply well to all real-world applications. In the real

world, we have objects. An object is something tangible, such

as a kitten or a motorcycle. Kittens and motorcycles are each

much more complicated than a single program module.

Remember that each module can complete only one task, in

a particular order. Anyone who has ever owned a kitten can

tell you that one task, in one particular order, is not the way

a kitten works!

In the real world, objects have both characteristics and

behaviors. The kitten has characteristics such as fur color,

eye color, number of legs, and so on. It has behaviors such

as running, jumping, purring, sleeping, and so on.

6

Introduction to Java 7

In the world of programming, each behavior is a response to

an external request or command. If we command the motor-

cycle to run by turning the ignition switch, the engine will

start. Pushing the horn button or the headlight switch will

call another behavior, but have no effect on the run com-

mand. The engine-starting behavior never sees the data from

the horn button or the headlight switch.

Object-Oriented Programming

The major characteristics of object-oriented programming are

encapsulation, polymorphism, and inheritance. Let’s take a

look at each of these characteristics now.

Encapsulation. We can gather variables and methods

together inside of a class. Instance variables and methods

can be added, deleted, or changed, but as long as the

functions provided by the object remain the same, any

code that uses the object can continue to use it without

being rewritten.

• Data hiding. All of the code for a class might be hidden

from the view of the end user with, no loss of functionality.

• Abstraction. A class can be written to hold nothing but a

pure design, partial implementations, or instance states;

or a class might be written where only the subclasses

are expected to be used.

Polymorphism. Polymorphism refers to the fact that different

objects respond to the same message differently.

Inheritance. The following are traits of inheritance.

• A new class might be defined in terms of an existing

class.

• The new class may have access to all the members and

methods of the base class.

• The new class can add new or more detailed methods

and state variables.

• Program code might be reused again and again.

• Classes are arranged in a hierarchical order.

Introduction to Java

The Language of Java

Object-oriented programming has a language of its own.

Let’s look at some very basic concepts of object-oriented

programming, and at the same time examine some of the

important terms that you’ll use when programming in Java.

What Is a Class?

There are several ways to describe a class.

• A class is the definition of an object.

• A class is the blueprint for the object.

• A class is not the object itself.

• There can be many objects from a single class.

• An object is an instance of a class.

The creation of an object from a class is called instantiation.

For example, let’s say we have a class called Feline. In

this case, puff, sylvester, or garfield might be

instances of the class Feline. Also, puff, sylvester,

and garfield are concrete instances of the blueprint for

data and behavior defined by class Feline.

A class defines attributes and behavior. Instances of a class

all have the same attributes. The attributes may or may not

have different values. Class Feline may have an attribute

called color. The color attribute of object puff may have a

value of yellow while object garfield may have a color

attribute whose value is orange. The term instance variable

refers to attributes that belong to an object, which is an

instance of a class.

8

➤tip You’ll notice that in the description below, class names are presented
in a different typeface. Later in your material, you’ll see that classes
within a computer program, as well as other programming elements,
such as statements, are also written in this special font.

Introduction to Java 9

An Overview of Inheritance

Inheritance is one of the major features of object-oriented

programming. Inheritance allows a subclass to be defined

in terms of a more general superclass. For example, con-

sider a superclass named WheeledVehicle. Superclass

WheeledVehicle has attributes such as manufacturer

and vehicle ID. We can define a subclass of

WheeledVehicle called Truck. The subclass Truck

“inherits” the attributes manufacturer and vehicle ID from the

superclass WheeledVehicle. Subclass Truck may add

new attributes such as tractor type and freight capacity.

Instances of subclass Truck have all the attributes of

subclass Truck and the attributes of Superclass

WheeledVehicle. All classes within a Java program are

arranged in a strict order from the top down. This is just a

brief overview of inheritance; it will be examined in detail later

in your program.

➤tip You’ll notice that the classes in the example begin with an
uppercase letter. This is typical in Java programming, though
not necessary to create a workable program.

/EnrollOnline/SampleTest.jhtml

	Preview
	Contents
	Introduction to Java
	INTRODUCTION TO OBJECTORIENTED PROGRAMMING IN JAVA
	The History of Java
	Important Terms and Concepts
	A Look at Programming
	Procedural Programming
	The Limitations of Structured Programming
	The Real World
	Object-Oriented Programming
	Encapsulation.
	Polymorphism.
	Inheritance.

	The Language of Java
	What Is a Class?
	An Overview of Inheritance

	Online Examination
	Hide Bookmarks

	Bookmarks:

